On interestingness measures of formal concepts
نویسندگان
چکیده
Formal concepts and closed itemsets proved to be of big importance for knowledge discovery, both as a tool for concise representation of association rules and a tool for clustering and constructing domain taxonomies and ontologies. Exponential explosion makes it difficult to consider the whole concept lattice arising from data, one needs to select most useful and interesting concepts. In this paper interestingness measures of concepts are considered and compared with respect to various aspects, such as efficiency of computation and applicability to noisy data and performing ranking correlation. Formal Concept Analysis intrestingess measures closed itemsets
منابع مشابه
Concept Interestingness Measures: a Comparative Study
Concept lattices arising from noisy or high dimensional data have huge amount of formal concepts, which complicates the analysis of concepts and dependencies in data. In this paper, we consider several methods for pruning concept lattices and discuss results of their comparative study.
متن کاملCombining Clustering techniques and FCA to characterize Interestingness Measures
Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Di erent Interestingness Measures "IMs" were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good interestingness measure remains a challenging task for a ...
متن کاملSemantic interestingness measures for discovering association rules in the skeletal dysplasia domain
BACKGROUND Lately, ontologies have become a fundamental building block in the process of formalising and storing complex biomedical information. With the currently existing wealth of formalised knowledge, the ability to discover implicit relationships between different ontological concepts becomes particularly important. One of the most widely used methods to achieve this is association rule mi...
متن کاملCombining Clustering techniques and Formal Concept Analysis to characterize Interestingness Measures
Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Different quality measures were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good quality measure remains a challenging task for a user. Given a quality...
متن کاملInformation Theoretic Interestingness Measures for Cross-Ontology Data Mining in the Mouse Anatomy Ontology and the Gene Ontology
Community annotation of biological entities with concepts from multiple bioontologies has created large and growing repositories of ontology-based annotation data with embedded implicit relationships among orthogonal ontologies. Development of efficient data mining methods and metrics to mine and assess the quality of the mined relationships has not kept pace with the growth of annotation data....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 442-443 شماره
صفحات -
تاریخ انتشار 2018